- Сообщения
- 1 858
- Реакции
- 396
- Баллы
- 103
В этой статье мы рассмотрим проект по распознаванию изображений с помощью Go. Мы также создадим Telegram-бота, с помощью которого сможем отправлять изображения для распознавания.
Первое, что нам нужно, — это уже обученная модель. Да, мы не будем обучать и создавать собственную модель, а возьмём уже готовый docker-образ ctava/tfcgo.
Для запуска нашего проекта нам понадобится одновременно 4 терминала:
Чтобы запустить сервер распознавания, создайте файл Dockerfile:
Так мы запустим сервер распознавания. Внутри будет наш сервер: src/imgrecognize. Кроме того, мы распакуем модель в каталоге: /model.
Приступим к созданию сервера. Первое, что нам нужно — это установить значение константы:
Это необходимо, чтобы не получить ошибку:
Мы не будем оптимизировать наш сервер, а просто запустим его через ListenAndServe на порту 8080. Перед запуском сервера нам понадобится граф как основа для TensorFlow. Грубо говоря, граф можно рассматривать как контейнер для операций и переменных. Его мы сможем загрузить из файла в формате protobuf: /model/tensorflow_inception_graph. pb. Наполним его позже через сессии.
В modelGraph мы сохраняем структуру нашей модели и ключевые инструменты для работы с ней. Labels содержат словарь для работы с нашей моделью. Важной частью по работе с моделью является нормализация. Мы нормализуем изображение внутри обработчика HTTP-запросов. В реальном проекте обязательно нужно выделить модуль по работе с распознаванием и нормализацией от HTTP-хендлера. Но в учебных целях мы оставим их вместе.
Чтобы нормализовать входные данные, мы преобразуем наше изображение из значения Go в тензор:
После этого мы получаем три переменные:
Graph нам нужен, чтобы декодировать, изменять размер и нормализовать изображение. Input вместе с тензором будет входной точкой для связи между нашим приложением и TensorFlow. Output будет использоваться в качестве канала получения данных.
Через graph мы также откроем сессию, чтобы начать нормализацию.
Код нормализации:
После нормализации изображения мы создаём сессию для работы с нашим графом:
С помощью этой сессии мы начнём само распознавание. На вход подадим наше нормализованное изображение:
Результат вычисления (распознавания) будет сохранён в переменной outputRecognize. Из полученных данных мы получаем последние 3 результата (ResultCount = 3):
А для HTTP-ответа мы дадим только один наиболее вероятный результат:
Весь код нашего сервера для распознавания:
Теперь нам нужно построить этот образ (build it). Конечно, мы можем создать образ и запустить его в консоли с помощью соответствующих команд. Но удобнее создавать эти команды в файле Makefile. Итак, давайте создадим этот файл:
После этого откройте терминал и выполните команду:
Теперь в первом терминале у нас есть локальный HTTP-сервер, который может принимать изображения. В ответ он отправляет текстовое сообщение, содержащее информацию о том, что было распознано на изображении.
Это, так сказать, ядро нашего проекта.
Первое, что нам нужно, — это уже обученная модель. Да, мы не будем обучать и создавать собственную модель, а возьмём уже готовый docker-образ ctava/tfcgo.
Для запуска нашего проекта нам понадобится одновременно 4 терминала:
- В первом мы запустим сервер распознавания изображений.
- Во втором мы запустим бота.
- В третьем мы создадим туннель до нашего локального хоста из публичного адреса.
- В четвёртом мы выполним команду на регистрацию нашего бота.
Чтобы запустить сервер распознавания, создайте файл Dockerfile:
Код:
FROM ctava/tfcgo
RUN mkdir -p /model && \
curl -o /model/inception5h.zip -s "http://download.tensorflow.org/models/inception5h.zip" && \
unzip /model/inception5h.zip -d /model
WORKDIR /go/src/imgrecognize
COPY src/ .
RUN go build
ENTRYPOINT [ "/go/src/imgrecognize/imgrecognize" ]
EXPOSE 8080
Так мы запустим сервер распознавания. Внутри будет наш сервер: src/imgrecognize. Кроме того, мы распакуем модель в каталоге: /model.
Приступим к созданию сервера. Первое, что нам нужно — это установить значение константы:
Код:
os.Setenv("TF_CPP_MIN_LOG_LEVEL", "2").
Код:
I tensorflow/core/platform/cpu_feature_guard.cc:140] Your CPU supports instructions that this TensorFlow binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2 FMA unable to make a tensor from image: Expected image (JPEG, PNG, or GIF), got empty file
Код:
func loadModel() (*tensorflow.Graph, []string, error) {
// Load inception model
model, err := ioutil.ReadFile(graphFile)
if err != nil {
return nil, nil, err
}
graph := tensorflow.NewGraph()
if err := graph.Import(model, ""); err != nil {
return nil, nil, err
}
// Load labels
labelsFile, err := os.Open(labelsFile)
if err != nil {
return nil, nil, err
}
defer labelsFile.Close()
scanner := bufio.NewScanner(labelsFile)
var labels []string
for scanner.Scan() {
labels = append(labels, scanner.Text())
}
return graph, labels, scanner.Err()
}
В modelGraph мы сохраняем структуру нашей модели и ключевые инструменты для работы с ней. Labels содержат словарь для работы с нашей моделью. Важной частью по работе с моделью является нормализация. Мы нормализуем изображение внутри обработчика HTTP-запросов. В реальном проекте обязательно нужно выделить модуль по работе с распознаванием и нормализацией от HTTP-хендлера. Но в учебных целях мы оставим их вместе.
Чтобы нормализовать входные данные, мы преобразуем наше изображение из значения Go в тензор:
Код:
tensor, err := tensorflow.NewTensor(buf.String()).
Код:
graph, input, output, err := getNormalizedGraph().
Graph нам нужен, чтобы декодировать, изменять размер и нормализовать изображение. Input вместе с тензором будет входной точкой для связи между нашим приложением и TensorFlow. Output будет использоваться в качестве канала получения данных.
Через graph мы также откроем сессию, чтобы начать нормализацию.
Код:
session, err := tensorflow.NewSession(graph, nil)
Код:
func normalizeImage(imgBody io.ReadCloser) (*tensorflow.Tensor, error) {
var buf bytes.Buffer
_, err := io.Copy(&buf, imgBody)
if err != nil {
return nil, err
}
tensor, err := tensorflow.NewTensor(buf.String())
if err != nil {
return nil, err
}
graph, input, output, err := getNormalizedGraph()
if err != nil {
return nil, err
}
session, err := tensorflow.NewSession(graph, nil)
if err != nil {
return nil, err
}
normalized, err := session.Run(
map[tensorflow.Output]*tensorflow.Tensor{
input: tensor,
},
[]tensorflow.Output{
output,
},
nil)
if err != nil {
return nil, err
}
return normalized[0], nil
}
Код:
session, err := tensorflow.NewSession(modelGraph, nil)
Код:
modelGraph.Operation("input").Output(0): normalizedImg,
Код:
res := getTopFiveLabels(labels, outputRecognize[0].Value().([][]float32)[0])
func getTopFiveLabels(labels []string, probabilities []float32) []Label {
var resultLabels []Label
for i, p := range probabilities {
if i >= len(labels) {
break
}
resultLabels = append(resultLabels, Label{Label: labels[i], Probability: p})
}
sort.Sort(Labels(resultLabels))
return resultLabels[:ResultCount]
}
Код:
msg := fmt.Sprintf("This is: %s (%.2f%%)", res[0].Label, res[0].Probability*100)
_, err = w.Write([]byte(msg))
Код:
package main
import (
"bufio"
"bytes"
"fmt"
"io"
"io/ioutil"
"log"
"net/http"
"os"
"sort"
tensorflow "github.com/tensorflow/tensorflow/tensorflow
/go"
"github.com/tensorflow/tensorflow/tensorflow/go/op"
)
const (
ResultCount = 3
)
var (
graphFile = "/model/tensorflow_inception_graph.pb"
labelsFile = "/model/imagenet_comp_graph_label_strings
.txt"
)
type Label struct {
Label string
Probability float32
}
type Labels []Label
func (l Labels) Len() int {
return len(l)
}
func (l Labels) Swap(i, j int) {
l[i], l[j] = l[j], l[i]
}
func (l Labels) Less(i, j int) bool {
return l[i].Probability > l[j].Probability
}
var (
modelGraph *tensorflow.Graph
labels []string
)
func main() {
// I tensorflow/core/platform/cpu_feature_guard.cc:140]
Your CPU supports instructions that this TensorFlow
binary was not compiled to use: SSE4.1 SSE4.2 AVX AVX2
FMA
// unable to make a tensor from image: Expected image
(JPEG, PNG, or GIF), got empty file
err := os.Setenv("TF_CPP_MIN_LOG_LEVEL", "2")
if err != nil {
log.Fatalln(err)
}
modelGraph, labels, err = loadModel()
if err != nil {
log.Fatalf("unable to load model: %v", err)
}
log.Println("Run RECOGNITION server ....")
http.HandleFunc("/", mainHandler)
err = http.ListenAndServe(":8080", nil)
if err != nil {
log.Fatalln(err)
}
}
func mainHandler(w http.ResponseWriter, r *http.Request) {
normalizedImg, err := normalizeImage(r.Body)
if err != nil {
log.Fatalf("unable to make a normalizedImg from
image: %v", err)
}
// Create a session for inference over modelGraph
session, err := tensorflow.NewSession(modelGraph, nil)
if err != nil {
log.Fatalf("could not init session: %v", err)
}
outputRecognize, err := session.Run(
map[tensorflow.Output]*tensorflow.Tensor{
modelGraph.Operation("input").Output(0):
normalizedImg,
},
[]tensorflow.Output{
modelGraph.Operation("output").Output(0),
},
nil,
)
if err != nil {
log.Fatalf("could not run inference: %v", err)
}
res := getTopFiveLabels(labels, outputRecognize[0].Value().([][]float32)[0])
log.Println("--- recognition result:")
for _, l := range res {
fmt.Printf("label: %s, probability: %.2f%%\n", l.Label, l.Probability*100)
}
log.Println("---")
msg := fmt.Sprintf("This is: %s (%.2f%%)", res[0].Label, res[0].Probability*100)
_, err = w.Write([]byte(msg))
if err != nil {
log.Fatalf("could not write server response: %v", err)
}
}
func loadModel() (*tensorflow.Graph, []string, error) {
// Load inception model
model, err := ioutil.ReadFile(graphFile)
if err != nil {
return nil, nil, err
}
graph := tensorflow.NewGraph()
if err := graph.Import(model, ""); err != nil {
return nil, nil, err
}
// Load labels
labelsFile, err := os.Open(labelsFile)
if err != nil {
return nil, nil, err
}
defer labelsFile.Close()
scanner := bufio.NewScanner(labelsFile)
var labels []string
for scanner.Scan() {
labels = append(labels, scanner.Text())
}
return graph, labels, scanner.Err()
}
func getTopFiveLabels(labels []string, probabilities []float32) []Label {
var resultLabels []Label
for i, p := range probabilities {
if i >= len(labels) {
break
}
resultLabels = append(resultLabels, Label{Label: labels[i], Probability: p})
}
sort.Sort(Labels(resultLabels))
return resultLabels[:ResultCount]
}
func normalizeImage(imgBody io.ReadCloser) (*tensorflow.Tensor, error) {
var buf bytes.Buffer
_, err := io.Copy(&buf, imgBody)
if err != nil {
return nil, err
}
tensor, err := tensorflow.NewTensor(buf.String())
if err != nil {
return nil, err
}
graph, input, output, err := getNormalizedGraph()
if err != nil {
return nil, err
}
session, err := tensorflow.NewSession(graph, nil)
if err != nil {
return nil, err
}
normalized, err := session.Run(
map[tensorflow.Output]*tensorflow.Tensor{
input: tensor,
},
[]tensorflow.Output{
output,
},
nil)
if err != nil {
return nil, err
}
return normalized[0], nil
}
// Creates a graph to decode, rezise and normalize an image
func getNormalizedGraph() (graph *tensorflow.Graph, input, output tensorflow.Output, err error) {
s := op.NewScope()
input = op.Placeholder(s, tensorflow.String)
decode := op.DecodeJpeg(s, input, op.DecodeJpegChannels(3)) // 3 RGB
output = op.Sub(s,
op.ResizeBilinear(s,
op.ExpandDims(s,
op.Cast(s, decode, tensorflow.Float),
op.Const(s.SubScope("make_batch"), int32(0))),
op.Const(s.SubScope("size"), []int32{224, 224})),
op.Const(s.SubScope("mean"), float32(117)))
graph, err = s.Finalize()
return graph, input, output, err
}
Код:
recognition_build:
docker build -t imgrecognition .
recognition_run:
docker run -it -p 8080:8080 imgrecognition
Код:
make recognition_build && make recognition_run
Теперь в первом терминале у нас есть локальный HTTP-сервер, который может принимать изображения. В ответ он отправляет текстовое сообщение, содержащее информацию о том, что было распознано на изображении.
Это, так сказать, ядро нашего проекта.